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Executive Summary

Herein are reported two methods for determining the Prony series

coefficients for viscoelastic stress relaxation data. Prony series are

nonlinear functions of exponential terms and have a number of coefficients

proportional to the number of terms. To fit a Prony series to stress

relaxation data, the coefficients must be properly selected. Due to the

nature of the exponential series and the number of terms, using methods

such as least squares to determine coefficients requires that some

coefficients must be estimated.

A new method of determining Prony series coefficients is presented.

This method, the Domain of Influence Method, capitalizes on

characteristics of the exponential decay curve to adjust its parameters to fit

a set of data. In this development, this method was applied to viscoelastic

stress relaxation data. The method is general and can be used to develop

exponential decay curves to represent other types of data where

appropriate.
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The DOI method does not include any error correction within itself.

To improve the results of the DO! method some form of error correction is

necessary. As noted, the non linearity of the Prony series does not lend

itself to common methods of error minimiTation. Optimization methods

can be applied to this problem. These methods use the functional behavior

of the problem under study to minimize or maximize some characteristic of

the problem. Here the function minimized was an error function between

the DOI estimated Prony series and the viscoelastic data. Optimization

was achieved by adjusting the Prony series coefficients to minimize that

error.

The DOI method was encoded in FORTRAN and integrated with

commercially available optimization routines to produce a tool called

Viscoelastic Coefficient Determination or VCD. A description of this code

including a discussion of the salient features is presented. An example is

used to demonstrate the DOI method, illustrate the operation of VCD, and

demonstrate the capabilities of the method and the software. A code listing

appears in the Appendix.

The authors believe that the DOI method coupled with error

op "tunization is a powerful tool for accurate Prony series representation of

viscoelastic data.
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Introduction

Modeling and predicting the behavior of any material system

requires knowledge of the mechanical behavior of the material. It would be

preferable to test every conceivable loading condition a material may be

subjected to and observe its performance, but this is not practical or

possible. Instead, standard tests are conducted on a limited number of

material samples and constitutive models, constructed to describe the

behavior, are used with the test data to predict the behavior of the material

for a wide range of loading conditions.

Solid rocket propellant typically consists of a binder with suspended

particles, hence the term composite propellant. Thus, solid rocket

propellant is a composite in the same sense that concrete is a composite,

that is, it is a particulate reinforced composite whose mechanical properties

are isotropic. The binder acts as the fuel for the chemical reaction and is

typically an elastomer or polymer. The suspended particles include the

oxidizer for the chemical reaction and other additives. The mechanical

behavior of a composite propellant is a function of many factors of which
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the individual behavior of the constituents is a significant contributor. The

particles tend to be elastic in behavior, while the elastomer or polymer

binder tends to be viscoelastic.

A characteristic of viscoelastic response is stress relaxation

behavior which is the time dependent response of a material to a given

constant strain. For the material investigated in this research, the stress

relaxation behavior is dominated by the binder's mechanical behavior. That

is, they exhibit time dependent loading response and 'relax' over time.

The primary goal of this research was to identify the best form of

the stress relaxation function to model the behavior of solid rocket

propellant. A secondary goal was develop a procedure to determine

constants in the function from material property data.

Phenomenological Model

The stress relaxation behavior of the propellant is determined

through stress relaxation tests. In associated research activities [ 1], test

coupons of the propellant were loaded to specified strain levels, the strain

level then held constant for the duration of each test, and the load

measured for a given time period. The data produced is the basis for the

construction of a phenomenologieal model of the material behavior.

The data for the material in question is monotonically decaying in

time with a slope that is monotonically increasing in time. These are

characteristic observations for typical viscoelastic materials. Common

practice in engineering analysis of viscoelastic materials has included the

use of exponential functions, individually or in series, to represent the time

dependent moduli and compliances. Justification for this practice has been
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established from mechanical analog [2] and functional approaches [3], [4]

to viscoelasticity. In the mechanical analog approach, the exponent of the

exponential function is directly related to the viscous element in the model.

Micro-molecular studies of polymer behavior [5] have added credence to

the mechanical analog approach, relating the mechanical elements to

molecular processes. In the furtherance of the functional approach,

Bernstein [4] developed a mathematical theory that proves any

monotonically decreasing function can be represented by the summation of

exponentially de_ying terms.

Considering the foregoing, the model used in this research is a

series of exponentially decaying terms and of the form:

G(t) = Go + _=' Gi exp - . (1)
i=l i

Prony [6] introduced a method for determining coefficients of a

series of exponential functions through a least-squares method. In honor of

his pioneering work, series composed of exponential functions are now

referred to as Prony series. More recently, the collocation method has

been used to determine Prony series coefficients. Tschocgl [7] presents a

succinct description of the collocation method using Schapery's method for

estimating relaxation times, ¢i.

Both the least-squares and collocation methods require that the

exponents of the exponential terms be known (assumed) a priori.

Typically, the exponents have been assumed to be evenly spaced on the

decades of a logarithmic time scale. This has led to complications and

erroneous results in viscoelastic analyses.
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A goal of this kind of research is to relate the specific coefficients

and exponents to specific molecular material parameters similar to the

results of Doi and Edward's research [5].
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Domain of Influence

Background

As discussed in the previous section, the Prony series is a

summation of decaying exponential functions. The behavior of these

functions determines how well the Prony series represents a given set

of stress relaxation data. As in the development of any numerical

approximation, the unknown coefficients, and for a Prony series the

exponents, in the approximating function must be determined in such a

way that the error between the data and the approximation is

minimized. Typically this is accomplished by use of a least-squares

method. Unfortunately, due to the nature of the exponential function

(the exponential terms do not form an orthogonal set, which is

fundamental to the application of the least-squares method [8]) this

process results in a system ofhigidy nonlinear equations for the

coefficients and exponents. To simplify this problem previous methods

for determining values of G i and zi have involved estimating a value
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for zi, a priori, and determining G i using a least-squares method. For

the purposes of this discussion this method will be referred to as the

"Time Constant Selection" method.

Due to the lack of suitability of the exponential terms for the

least squares method and difficulties in estimating the time constants, it

is not uncommon for the Prony series fit to oscillate or h_tiggle' through

the data points. Wiggling results from having too few or too many

exponential terms in the Prony series fit. In the event of too few terms,

increasing the number of exponential terms can reduce or eliminate the

wiggle. However, increasing the number of exponential terms increases

the number of assumed constants (which may affect fit accuracy) and

increases the required computational effort in the Time Constant

Selection method.

Another method of fitting stress relaxation data involves

plotting the logarithm of the modulus versus the logarithm of time.

Often the resulting curve is a nearly straight line. The slope and

intercept of this line may then be determined using a least-squares

method. Limitations of this method include: the result is a single term

Prony series, the approximation is not performed on the original data,

and the accuracy of the approximation may be poor [9].

To improve the results obtained from the Time Constant

Selection method it is necessary to improve the estimation of zi. To

achieve this goal, it is useful to review the behavior of the decaying

exponential functions. Figure 1 shows several decaying exponential

functions with different time constants plotted versus the logarithm

(base 10) of time. These curves are generated from:
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Figure 1 shows the effect of the exponent in an exponential

function. Note that ? is 1.0. This figure demonstrates that: (1)

changes in the exponent of an exponential function produce a shift of

the curve along the time axis; (2) the majority of the decay takes place

over a limited range of time; and (3) in this range the curve's slope (that

is, the rate of change relative to the logarithm of time) is non-zero and

near zero outside this range. Solving equation (2) for t yields:

From this equation a quantity, 8log(t) can be defined that gives the number

of decades over which a given percentage of'/(t) decays. Recalling that

y=l in equation (3), we may write:
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t= -x.ln(3,(t)). (4)

Now define the value of "t(t) = a subject to the constraint:

0.5 < a < 1.0. From the value of't/define: b = 1- a and c = 1-b = 1- 2a

(for example: if a = 0.05, b = 0.95, and c = 0. 90). Recognize that 'a' and

'b' will have times, t o and t b associated with them through equation (4):

to =-_ln(a) and tb =-xln(b).

Now define flog(t) as:

81og(t)=log(to)-log(tb)=log(-zln(a))-log(-_ln(b)) (5)

Simplifying equation (5) yields:

8log(t) ° (ln(y(t))

From equation (6) and using ),(t) = 0.05, one finds that 8log(t) is 1.77.

Expressed in another way, 90 percent of the decay takes place in 1.77

decades of time. This region is defined as the "domain of influence" for

this exponential function.

Figure 2 is shown to develop a better understanding of the

limited range of non-zero slope, i.e., the domain of influence. This

figure presents a plot of the slope of the exponential function shown in

Figure 1 versus the logarithm of time. Note, these derivatives are not

with respect to time, but, rather with respect to the logarithm of time.

The derivatives with respect to the logarithm of time are:

d3'(t_____)--t ln(10).e _
d log(t)

(6)

(7)
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The conclusions of this study of the effects of the time

constants are: (1) an exponential term decays, i.e., has non-zero slope,

over a limited range of time, a limited domain of influence; and (2) the

value of z locates the peak of the slope curves and the range of the

exponential decay. These conclusions agree with the conventional

wisdom from control system behavior that an exponentially decaying

signal or output will decay to less than one percent of its original value

in a time equal to throe time constants (the exponent).

Figure 3 shows a plot of an exponential decay term for various

values of'/in equation (2), note that here z is constant.

Domain of Influence • 9



20O

150

E 10o
g

5O

0

-3

-- pmrnPso

............... g-mmPlO0

....... p_200

log(t)

Figure 3 - Effects ofy on Exponential Terms

The conclusion from this study is that the 7 terms determine the

range on the modulus axis over which a particular exponential term will

act.

Method

Knowing the characteristics of the exponential function, a

numerical procedure can be devised that gives good agreement between

a stress relaxation data set and the Prony series. There are several

steps to this process. Table 1 shows an example of this method as

applied to a portion of a stress relaxation data set. The procedure is as

follows:

Step 1

Define the interval over which the exponential terms operate in

terms of decades. This is analogous to the 6log(t) of equation (4).

In the example in table ], 8log(t)=0.80.

Step 2

Define the change in log(t) as:
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8 log(t i) = log(t i) - log(t, )

where t i is a time point in the stress relaxation data set and t_ is the

first time point.

Step 3

Compute the (51og(ti) for the time data of the data set.

Step 4

Review the _iog(ti) values to find the data point, i, where the value

exceeds the interval limit set in step 1.

Step 5

Repeat steps 3 and 4 using the i+l data point as the first data point

in equation (5). Repeat this step until the time data set is divided

into N groups.

Step 6

Divide the modulus (G) data into groups according to the divisions
defined in the time data.

Step 7

Normalize the modulus (G) data using:

G i -- G n

Norm(Gi) - _- _--_

where G i is the ith G data point, G_ is the first modulus (G) data

point in a given data group, and G n is the last modulus (G) data

point in a given data group.

Step 8

Find the %iby using linear interpolation. Identify data point k and

k+l such that e-! (0.3676) lies between the normalized values ofG k

and G_,m. The exponent %iis found from:

ti =(e-'-_ln(G=)) t=+t -tk
51n(G=+,)_ 61n(Gk ) I-t,

In table 1, the last column contains the t values. Note that these

values are associated with the first of the two scaled del G(t) that
bracket the value of e-l.
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Step 9

Modulus values, that is the G's, are the first values of G in the N

groups of G values. These are the boxed values in the del G(t)
column of table 1.

Step 10

The steady state modulus value is the mean value of the last three G

data values.

Step 11

Scale the values ofG i using the values of the exponential and the

associated zi, to wit:

The N exponents and N coefficients determined from the above

procedure are the required Prony series exponents and coefficients for the

stress relaxation modulus function.

Comments on the Method

In step 10, the steady state, that is, elastic modulus is the average of

the last three G data points. This requires that the data reach a steady state

(or at least not change significantly) for at least those three points.

Through step 10 we have ignored the influence of the exponential

components of equation (I) upon the G i modulus terms. Note that the sum

ofG o and the Gi's is equal to the first G data point, that is:

N

Gem, = Go +_-"_Gi
i=l

Comparing the above equation with equation (1), evaluated at the first time

point using the coefficients and exponents determined through step 1O, it is

clear that the value of G(toata_) will not equal Goata _ due to the value of the
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exponential.For the data considered and the equations described, the

exponential will always have a value between 1 and 0 (see figure 1). Also

/ t-.s)the value of" exp for "ci in the range: t_.,., < _i < 10" t_.,., will

not be close to one. This results in a Prony series fit which does not match

the data for the first part of the curve, specifically, the fit values are lower

than the data. An example of this result is presented in figure 4.

To account for the influence of the exponential it is necessary to set

the Prony series fit equal to Gdata I and scale the G i coefficients:

G_,., = G O+)-':G i = G O+_(_i exp
i=l i=l

where G_ are the scaled coefficients. One possible solution to the above

equation is to set the product of the scale coefficients and the exponential

equal to the coefficient determined in step 9. The equation of step 11

results from this solution. Applying these scale factors to the DOI fit of

figure 4 gives the curve presented in figure 5.

4000.0 r

2500.03000"0 X'. • =. • I _ DOI fit

2000.0

15111.0

1000.0

0.0 i i I t i

0.0010 0,0100 0.1000 1.0000 IO.O(XX) 1D0.0000

ksltl

Figure 4. DOI Results for Data in Table 1.
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Table 1. An Example of the Domain of Influence Method

Time

(.un)
0.0010
0.0023
0.0049

G(t) scaled

log(t) del log(t) Data del G(t) del Co(t)

-3.0000 0.0000 3064.5 I 673.0 I 1.0000
-2.6469 0.3531 3823.4 531.9 0.7904 0.0049
-2.3083 0.6917 3536.3 244.8 0.3638

-2.1472 0.0000 3291.5 I 1132.5 I 1.0000
-2.0144 0.1328 3111.7 952.7 0.8413
-1.8364 0.3108 2861.3 702.3 0.6201
-1.7093 0.4379 2701.7 542.7 0.4792 0.0248
-1.5788 0.5684 2537.7 378.7 0.3344
-1.4762 0.6710 2418.4 259.3 0.2290
-1.3644 0.7829 2274.9 115.9 O.1023

0.0071
0.0097
0.0146
0.0195
0.0264
0.0334
0.0432
0.0555
0.0695
0.0890
0.1128
0.1809
0.2265
0.2938

-1.2559 0.0000 2159.0 [ 839.4 I 1.0000
-1.1580 0.0979 2033.2 713.6 0.8501
-1.0507 0.2053 1905.5 585.8 0.6979
-0.9484 0.3075 1793.4 473.8 0.5645 0.1673
-0.7425 0.51 34 1587.5 267.8 0.3191
-0.6450 0.6110 1489.5 169.9 0.2024
-0.5319 0.7240 1397.2 77.6 0.0924

0.3828
0.5160
0.6818
0.9021
1.1995
1.6607

-0.4170 0.0000 1319.6 [ 536.6 I 1.0000
-0.2873 0.1297 1218.1 435.0 0.8107
-0.1664 0.2506 1135.0 352.0 0.6559
-0.0447 0.3723 1057.5 274.5 0.5115 1.1410
0.0790 0.4960 961.6 178.6 0.3327
0.2203 0.6373 882.4 99.3 0.1851

2.5274
3.6455
4.7850
6.3953
8.0163

10.2722
12.9772

0.4027 0.0000 783.0 I 304.7 ] 1.0000
0.5618 0.1591 707.8 229.5 0.7532
0.6799 0.2772 660.4 182.0 0.5975
0.8059 0.4032 605.8 127.4 0.4182 7.1208
0.9040 0.5013 571.5 93.1 0.3057
1.0117 0.6090 539.4 61.0 0.2004
1.1132 0.7105 498.3 19.9 0.0654

17.3240
22.2840
28.7547
36.4954
46.2945
58.3599
73.6437
84.5043

1.2386 0.0000 478.4 I 117.0 I 1.0000
1.3480 0.1093 451.3 90.0 0.7691
1.4587 0.2201 430.7 69.3 0.5922
1.5622 0.3236 418.0 56.6 0.4840
1.6655 0.4269 391.6 30.2 0.2585
1.7661 0.5275 362.7 1.3 0.0115
1.8671 0.8285 357.6 -3.7 -0.0319
1.9269 0.6882 361.4 0.0 0.0000

41.5427
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Figure 5. Scaled DOI Results in Table 1.

This is a simple procedure for determining the exponents and

coefficients of a Prony series approximation of stress relaxation data

based on the domain of influence of the individual exponential

functions. This procedure shows good correlation with test data and

superior performance in comparison to other methods. The procedure

is easy to implement by hand or using spreadsheet programs, such as:

Microsofh_ Excel or Lotus@ 1-2-3. Apparently, this method can

determine the Prony series term exponents and coefficients for any data

set that has monotonically decreasing absissae with increasing ordinate.

It is important to note that the DOI method is not limited by a

large number of data points and is not sensitive to irregularly spaced

data. However, due to the linear interpolation used to find the

exponent values, it is necessary to have at least three data points within

any given data group.

A limitation of the DOI method is that there is no minimization

of error between the Prony series approximation and the data.

Domain of Influence ,, 1:5



Evaluating the error and revising the approximation based on that

evaluation will lead to better agreement between the data and the Prony

series. As noted before, due to the non linearity of the Prony series,

simple, linear methods are not applicable for error correction in this

problem. A more sophisticated approach must be used which is

compatible with nonlinear equations. Numerical optimization is a

nonlinear solution method applicable to error minimization.
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Optimization Method

The Domain of Influence method provides a quick and effective

determination of the Prony series coefficients. The results are the product

of a single analysis of the data, which does not include any error evaluation,

or minimization. This may be sufficient for some applications, however, it

may not be sufficient for others. In these other applications it is desirable

to evaluate the deviation of the DOI results fi'om the given data. The

deviation provides a measure of the quality of the curve fit.

Due to the lack of error evaluation in the D0I method, an

additional operation must be performed if any improvement of the Prony

series fit to the data is to be realized. As previously discussed, due to the

non-linearity of the Prony series, standard techniques such as the least

squares method will not work. Optimization techniques provide alternate

methods for non-linear problems. Optimization methods, or "non-linear

programming" methods, were applied to the problem of improving the

accuracy of the Prony series coefficients and exponents determined by the

DOI method. As is the case with a number of mathematical techniques,
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optimization is an iterative procedure that is suitable for numerical

implementation using computers and a variety of programming languages.

The general optimization problem statement is to minimize or

maximize an objective function subject to constraints on the problem and

limits on the independent variables. In the general optimization problem,

the objective function describes some characteristic of the problem that is

minimized or maximized (e.g., material used, cost, stress, etc.). The

constraints describe some characteristic of the problem, i.e., a secondary

dependent variable, which is not allowed to exceed or fall below a certain

value (e.g., size, quantity, deflection, etc.). The limits on the independent

variables of the design are self explanatory. [10]

The optimization problem for improving the fit of a Prony series to

stress relaxation data is defined using an error function as the objective

function. The error function used in the problem definition is:

]_ [(Gd_,- G_(td_,).) 2error = 112.., |'
V i=l _, Gd_, (s)

where Gem i is the modulus data, tdm i is the time data at some point i, Gp,_y

is the Prony series evaluated at that point in time, and the error is the

square root of the summation of the squares of the normalized difference

between the data and the Prony series fit for all data points in the set. In

the objective function, G_.,y is determined using the Prony series, which is

a function of the coefficients, G k and % and the time value. The error

function is minimized using an optimization technique which manipulates

the objective function variables, that is, the Prony series coefficients.
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For this optimization problem, no constraints were imposed, i.e.,

there are no other dependent variables with external restrictions. Limits for

the Prony series coefficients and exponents, i.e., the independent variables,

were established such that the Gk's and zk's could approach zero and would

not become so large as to cause machine errors in calculation. In the

formulation used, neither the coefficients nor exponents are permitted to be

negative.

As might be expected from the form of the error function, sections

of closely spaced data (relative to other sections of the data) weight the

error function. When optimizing a data set with an area of high data

density, the optimization favors the high density area. Consequently, to

obtained the best results the data must be evenly spaced on a logarithmic

scale.

Optimization of the coefficients and exponents determined from the

DOI method was performed using Design Optimization Tools (DOT)

soft'ware from VMA Engineering. These are a set of FORTRAN routines

that contain algorithms to perform numerical optimization and can be

applied to most applications wherein optimization is appropriate. For

unconstrained non-linear optimization DOT uses the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) optimization algorithm. This method uses the

objective function to define a "search" direction from the initial values of

the function using the gradient of the function. In particular, the initial

"search" direction, i.e., direction in which the independent variables are

incremented, is selected by determining the direction of steepest descent.

Subsequent search directions are computed using the product of an

estimate of the inverse of the Hessian matrix and the gradient of the

Optimization Method • 19



objective function. The estimate of the inverse Hessian contains

information about the previous search direction which improves the

convergence to an optimal solution I11 ].

The BFGS method, like all optimization methods, may yield several

"solutions" due to the presence of local minima in the objective function

[12]. To find the global minimum, that is, the lowest value of the objective

function, and, consequently for this application, the least deviation from the

data, it is necessary to begin the search in close proximity to this optimum.

This requires that the initial values of the independent variables be close to

the optimal values. The DOI method provides such an initial guess.

Paring the DOI method of Prony series estimation and the

optimization techniques yields more accurate series coefficients which

better represent the data. This is reflected in a reduction of the error

function as determined by equation (8).
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Viscoelastic Coefficient

Determination Program

Program Documentation

The DOI method and Prony series coefficient optimization have

been implemented in a program called Viscoelastic Coefficient

Determination or VCD. This program is a collection of routines written in

FORTRAN which numerically implement the DOI method and use the

DOT optimization routines to refine the Prony series coefficients.

The program VCD is fairly simple and efforts were made during its

development to adequately comment the code. Generally, VCD is built in

a modular fashion making use of subroutines and functions to perform

specific tasks. Variables used within the program by many of the

subroutines are passed about in a common block called DATA. Figure 6

gives a flow diagram illustrating the salient features of VCD.
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Define DOT Parameters I

l
Call Subroutine READER
Read in Relaxation Data

t
Call Subroutine DOI:

Define Initial Prony
Series Coefficients

[
Call Subroutine DOT:
Perform BFGS

Optimization Increment

[No
Call Subroutine EVAL:

Evaluate Objective
Function

Wdte Output

I
[stop I

Figure 5. Flow Chart of Program VCD

VCD is constructed as follows:

Step 1
A set of variables are initialized which establish limits on the

optimization input variables and the optimization is defined to be

unconstrained optimization. The setting for unconstrained

optimization invokes the BFGS method of optimization.

Step 2
The program then loads data from an input file.

VCD Program • 22



Step 3

The routine which reads the input file, subroutine READER, first

prompts the user for an input file name. The input file must have

the format: first line is the number of data points and following

lines are data points the first value being the time and the second

value is the modulus value. Tab delimited data is acceptable.

Step 4

After the data has been loaded into the data arrays in VCD, the
DOI method is used to determine the number of terms and the

initial values for G and z in the Prony series.

Step 5

Subroutine DOI implements the DOI method using the steps

outlined in the METHOD section of this report: This particular

implementation takes the average of the last 3 modulus values as

the steady state or elastic modulus for the material. This is based

on the assumption that the data achieves a steady state value for at

least the last 3 points.

Step 6

The DOT implementation of the BFGS optimization method uses

the DOI results as the initial Prony series coefficients. DOT

optimizes using an iterative procedure which manipulates the Prony

series coefficients and passes those coefficients out of the program

to be used in the objective function evaluation. Objective function

evaluation, that is data/fit error, is done in subroutine EVAL and

the results returned to DOT. The results of the objective function

evaluation are compared to optimization solution convergence

parameters to determine if the error has been sufficiently minimized.
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User's Guide

The VCD input file must have the format presented in Table 2.

Table 2. Sample
VCD In

38

mt File

0.0010 3964.5

0.0023 3823.4

0.0049 3536.3

0.0071 3291.5

0.0097 3111.7

0.0146 2861.3

0.0195 2701.7

0.0264 2537.7

0.0334 2418.4

0.0432 2274.9

0.0555 2159.0

84.5043 361.4

Once an input file has been generated that conforms to the above

format, VCD can be run using that file as input. The compiled and linked

FORTRAN VCD code is run by typing VCD at the DOS prompt.

VCD first prompts the user for the name of the input file, here it is

important to note that the file name must be enclosed in single quotes, for

example _YFR,E.INP'. Using that file for the DOI process and the

optimization operation, VCD performs these operations without any user

intervention. As it loops through the optimization loop it writes the

statement, "working ..." on the screen once per loop. When VCD

successfully ends its execution the statement, "Stop - Program terminated."

is written to the screen.

VCD Program • 24



Once VCD completes its optimization the DOT subroutines

generate an output file that reports on DOT's actions during the

optimization process; this file is called "OUTPUT". VCD produces an

output file named "COEFF.OUT" which contains the initial set of Prony

series coefficients from DOI and the opftmized coefficient set from the

DOT routines. The file "COEFF.OUT" is an ASCII text file that can be

imported into other programs or software for further analysis or study.

The contents of the data file have the following format and form:

number of terms: 3

DOI Results

410.3060000

123.0993000 5.177419E-001

93.2304100 3.6075040

15.8109600 8.7106520

Optimized Result

375.4074000

115.3154000 4.676060E-001

111.6172000 6.2780050

30.5934300 6.2728110

The coefficients in the two blocks are arranged as follows:

G O

G1 t 1

G 2 t 2
:

G n t n
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Appendices

Contained herein are the code listing of the VCD program. This

listing does not include the DOT source code as that is a large body of

code which is not easily interpreted. Also due to the relative robustness of

the DOT code, detailed knowledge of its internal structure and function are

not necessary to exercise the code's utility. The DOT code is invoked by

the one subroutine call to DOT in program VCD.

Contents

1) VCD Code Listings by File

File VCD

File READ

File DOI

File EVAL

2) Sample Input File

3) Sample Output File

4) Sample DOT Output File
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File VCD
1 $ DEBUG

2 PROGRAM VCD

3 C

4 C Program to use the DOT subroutine for finding Prony series
5 C coefficients to fit viscoelastic material test data.

6 C

7 DIMENSION X(40),XL(40),XU(40),G(20),

8 *WK (1400), IWK (200), RPRM (20), IPRM (20)

9 COMMON/DATA/ N, NTERM, EDATA(200), TDATA(200)
i0

II C DEFINE NRWK, NRIWK

12 NRWK=I400

13 NRIWK=200

14

15 C ZERO RPRM AND IPRM

16 DO 10 I=i,20

17 RPRM(I) =0.0

18 10 IPRM(I) =0

19

20 C Override the default for CTMIN which is the minmum value

21 C of a constraint (essentially program zero)

22 C RPRM(2) = 0.005

23 RPRM(3) = 0. 0001

24 RPRM(4) = 0.000001

25

26 C override the default for ITMAX, the max number of iterations

27 IPRM(2) = -i

28 IPRM(3) = i000

29 IPRM(4) = i0
3O

31 C DEFINE METHOD

32 METHOD=I

33

34 C

35 C DEFINE IPRINT, MINMAX, INFO
36 C

37 IPRINT = 3

38 MINMAX = -i

39 INFO = 0

4O

41 C Name the DOT output file

42 open(6, file='output', status='new')
43

44 C

45 C Subroutine READER reads data to be used in the test

46 C INFO is passed as a dummy varible and is not used
47 C

48 CALL Reader (INFO)

49

50 C Open a file for output of the DOI results and the

51 C optimization results

52 Open (9, file=' coeff, out', status='new' )
53 C

54 C Subroutine DOI reviews the data and make a guess of how many

55 C terms to use, NTERM, and values for E(i) and tau(i)

56 C

57 CALL DOI (X)
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58

59 C Write the DOI results to the output file

60 write(9,*) 'number of terms: ', nterm

61 write(9,*) 'DOI Results'

62 write (9,*) X(1)

63 do 15 i = I, nterm

64 15 write(9,*) X(2*i), X(2*i+l)
65

66 C Define the number of design variables and constraints

67 C since this is an unconstrained problem NCON=0
68 NDV = 1 + 2 * NTERM

69 NCON = 0

70 C

71 C DEFINE BOUNDS, these are side constraints
72 C

73 DO 20 I=I,NDV

74 XL(I) = 1.0E-10

75 20 XU(I) = 1.0E20
76

77

78 C

79 C DOT LOOP - DOT optimizes the values of the X array. In this

80 C application, the X array contains the values of the

81 C G and tau viscoelastic coefficients.

82 C

83 100 CALL DOT(INFO,METHOD, IPRINT,NDV, NCON,X,XL,XU,

84 *OBJ, MINMAX, G, RPRM, IPRM, WK, NRWK, IWK, NRIWK)

85 IF(INFO.EQ.0) GOTO Ii0

86 C

87 C Subroutine EVAL evaluates the objective function and returns its

88 C value in OBJ. It also evaluates the value of the constraints and

89 C returns those values in the array G.
90 C

91 CALL EVAL(OBJ,X,G, NTERM)

92 Write(*,*) 'working . '
93 GO TO 100

94 C

95 C Once DOT is satisfied, write out the Prony series
96 C coefficients for the user's amusement

97 C

98 ii0 continue

99

i00 C Write the results of the optimization to the output file
101

102

103

104

1 105 120

106

107

write(9,*) ' '

write(9,*) 'Optimized Result'

write (9, *) X(1)

do 120 i = I, nterm

write(9,*) X(2*i), X(2*i+l)
STOP

END

Name Type Offset P Class

EDATA REAL

G REAL

I INTEGER* 4

INFO INTEGER*4

IPRINT INTEGER*4

I PRM INTEGER* 4

IWK INTEGER* 4

8

496

7144

7160

7152

7056

6176

/DATA /
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METHOD INTEGER*4

MINMAX INTEGER*4

N INTEGER* 4

NCON INTEGER* 4

NDV INTEGER* 4

NRIWK INTEGER* 4

NRWK INTEGER* 4

NTERM INTEGER* 4

OBJ REAL

RPRM REAL

TDATA REAL

WK REAL

X REAL

XL REAL

XU REAL

7148

7156

0

7172

7168

7140

7136

4

7180

6976

8O8

576

16

176

336

/DATA /

/DATA /

/DATA /

Name Type

DATA

DOT

EVAL

DOI

READER

VCD

Size

1608

Class

COMMON

SUBROUTINE

SUBROUTINE

SUBROUTINE

SUBROUTINE

PROGRAM

Pass One No Errors Detected

107 Source Lines
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File READ
1 SDEBUG

2 Subroutine Reader(d)

3 Integer d, n

4 character*8 fn

5 COMMON/DATA/ N, NTERM, E(200), T(200)
6C

7 C This subroutine acquires the viscoelastic test data from a file

8 C and puts it into the E and T arrays of the common block data.
9C

10 C First read the name of the data file from the keyboard
11 C

12 Write(*,*) 'Please give me the name of the data file'

13 Read(*,*) fn

14 Open(7,file=fn, status='old')
15 C

16 C Read the number of data points
17 C

18 Read(7,*) n

19 write(*,*) 'n', n
20 C

21 C For the number of data points, read data from the file
22 C

23 do 10 I=I,N

24 I0 read(7,*) T(I), E(I)
25

26 return

27 end

Name Type Offset P Class

D INTEGER*4 0 *

E REAL 8 /DATA /

FN CHAR*8 16

I INTEGER*4 24

N INTEGER*4 0 /DATA /

NTERM INTEGER*4 4 /DATA /

T REAL 808 /DATA /

28

Name Type Size Class

DATA 1608 COMMON

READER SUBROUTINE

Pass One No Errors Detected

28 Source Lines
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File DOI
2

3 C

4 C

5 C

6 C

7 C

8

9

i0

ii

12

13

14 C

1

Subroutine DOI (x)

This program evaluates the data and makes a good guess

for the number of coefficients necessary, nterm, and
the values E and tau

DIMENSION x(40), El(40), tau(40), ndx(20)

Real delt, delE(200), sp

integer j, i

COMMON/DATA/ N, NTERM, E(200), T(200)

15 C Begin searching the time data for operational ranges of the
16 C exponential function. This will detemine where in the data

17 C an exponential term will operate and provide the locations,

18 C that is the number of the element, in the data set in the

19 C index array (ndx(j) )
2O C

21 C Initilize the counter varible j and the first ndx element

22 C j will be used to increment the ndx array
23 C

24 j = 1

25 ndx(1) = 1

26 C

27 C the conditional checks to see if the delta of log t is less

28 C than the 0.80 decade operational range of the exponential function

29 C if it is then increment the j counter and record where that occured

30 C in the ndx array
31 C

32 do 20 i = i, N

33 delt = logl0(t(i)) - logl0(t(ndx(j)))

34 if (delt .It. 0.80) goto 20

35 j = j + 1

36 ndx(j) = i
37 20 continue

38 C

39 C Record how many sets within the data were found
4O C

41 nterm= j

42 C

43 C If the last index position is the last data point then there is
44 C one fewer sets within the data

45 C

46 if(ndx(j) .eq. N) nterm = j - 1
47 C

48 C Define the last ndx term to be the last data point
49 C

50 ndx(j+l) = N
51 C

52 C Now work on the E values to find a normalized value of

53 C the E values in the sets within the data

54 C

55 j = 2
56

57 do 40 i = i, N-I

58 if (i .eq. ndx(J)) j = j + 1
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1

1

1

59 C

60 C

61

62

63

64

65

66 C

4O

write(*,*) 'j=',j, ' i=',i

write(*,*) 'E(',ndx(j-l),')=',E(ndx(j-l)),E(ndx(j))

delE(i) = (E(i)-E(ndx(j))) / (E(ndx(j-l))-E(ndx(j)))
continue

delE(N) = 0.0

67 C The delE array is the delta in the E values broken into sets

68 C associated with the 0.80 decade time ranges. In each set, delE

69 C ranges from 1 to 0.
7O

71

72 C Now find the tau's associated with the sets of delE data that are

73 C defined by the ndx array.
74 C

75 C initialized the counter varibles

76 C

77 j = 1

78 i = 0

79 C

80 C Begin the loop. Loop will find the points in the data

81 C set between which the value of exp(-l) lie and linearly

82 C interpolate what a guess for tau should be.
83 C

84

85

86

87

88

89

90

91

92 C

sp = exp(-l.0)

50 i = i + 1

if (delE(i) .gt. sp) goto 60

tau(j) = ylntrp(sp, t(i-l),delE(i-l),t(i),delE(i))

j = j + 1

i = ndx(j)

60 if (i .it. N) goto 50

93 C Find the Ei values associated with the sets in the data

94 C

95 do 70 k = i, nterm

96 70 El(k) = E(ndx(k)) - E(ndx(k+l))
97

98 C

99 C Now condition the E data to account for the effects of the

100 C exponential terms using the taus defined
I01 C

102 do 80 k = i, nterm

103 C write(*,*) El(k), T(1), tau(k)

104 80 El(k) = Ei(k)/exp(-T(1)/tau(k))
105 C

106 C Define the constant term of the coefficient set Eo as the

107 C average of the last three E(i) data points and make this

108 C the first element of the x array
109 C

ii0 x(1) = (E(N-2) + E(N-I) + E(N)) / 3.0
IIi C

112 C Put the results into the x array for DOT to use
113 C

114 do 90 k = I, nterm

115 C write(*,*) 'Ei(',k,')',Ei(k), ' tau(',k,')',tau(k)

116 x(k * 2) = El(k)

117 90 x(k * 2 + i) = tau(k)
118
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119 return

120

121 Stop

122 End

Name Type Offset P Class

DELE REAL 416

DELT REAL 1228

E REAL 8 /DATA /

EI REAL 16

EXP INTRINSIC

I INTEGER*4 1220

J INTEGER*4 1216

K INTEGER*4 1240

LOG10 INTRINSIC

N INTEGER*4 0 /DATA /

NDX INTEGER*4 336

NTERM INTEGER*4 4 /DATA /
SP REAL 1236

T REAL 808 /DATA /

TAU REAL 176

X REAL 0 *

YLNTRP REAL FUNCTION

123

124

125 Function ylntrp(y, xl,yl,x2,y2)
126 C

127 C This function returns the linear interpolation of x at

128 C the given value of y between the points xl,yl and x2,y2
129 C

130

131

132

133

134

135

136

real x, y, xl, yl, x2, y2, ylntrp

x = ((x2 - xl) * (y - yl)) / (y2 - yl) + xl

ylntrp = x

return

stop
end

Name Type Offset P Class

X REAL

Xl REAL

X2 REAL

Y REAL

Y1 REAL

Y2 REAL

137

138

1256

4*

12"

0*

8*

16 *

Name Type Size Class

DATA

DOI

YLNTRP REAL

1608 COMMON

SUBROUTINE

FUNCTION

Pass One No Errors Detected

138 Source Lines
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File EVAL

Name

1 SDEBUG

2 SUBROUTINE EVAL(OBJ, X, G, NTERM)

3 C

4 C This subroutine evaluates the objective function, OBJ and the

5 C optimization constraints G

6 C

7 REAL L2ERF, G(20), X(40), XE(20), XTAU(20)

8 INTEGER NTERM

9 C

10 C To find the centroidal time for the DOT generated coefficients,

11 C first have to arrange the X values into coefficients and taus

12 C so that functions CENT and the error function, L2ERF, will

13 C understand them.

14 C

15 DO 10 I = i, NTERM

16 XE(I) = X(I * 2)

17 10 XTAU(I) = X(I * 2 + 1)

18 C

19 C Evaluate the objective function
2O C

OBJ = L2ERF(NTERM, X(1), XE, XTAU)

G

I

L2ERF

NTERM

OBJ

X

XE

XTAU

21

22

23

24

RETURN

END

Type Offset P Class

REAL 8 *

INTEGER* 4 176

REAL FUNCTION

INTEGER* 4 12 *

REAL 0 *

REAL 4 *

REAL 16

REAL 96

25 C

26 REAL FUNCTION L2ERF(M, EO, E, TAU)
27 C

28 C This function evaluates the L2 norm error function as the

29 C DOT objective function
30 C

31

32

33

34

35

36

37

38

39

40

41

42

COMMON/DATA/ N, NTERM, EDATA(200), TDATA(200)

REAL DIFF, SUM, E(20), TAU(20), EO
SUM= 0.0

10

DO 10 I=I,N

DIFF = EDATA(I) - PRONY(TDATA(I), EO, M, E, TAU)

DIFF = DIFF / EDATA(I)

SUM = SUM + DIFF**2

L2ERF = i00.0 * (SQRT(SUM) / N)

RETURN

END
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Name Type Offset P Class

DI FF

E

EDATA

EO

I

M

N

NTERM

PRONY

SQRT

SUM

TAU

TDATA

REAL 196

REAL 8 *

REAL 8 /DATA /

REAL 4 *

INTEGER* 4 188

INTEGER* 4 0 *

INTEGER* 4 0 / DATA /

INTEGER*4 4 /DATA /

REAL FUNCTION

INTRINSIC

REAL 184

REAL 12 *

REAL 808 /DATA /

43 C

44 FUNCTION PRONY(T, EO, M, E, TAU)
45 C

46 C This function calculates the value of array E elements

47 C using the Prony equation, E, and time values.
48 C

49

5O

51

52

53 C

54

55 C

56

57

58

59

6O

61

Name Type

DIV REAL

E REAL

EO REAL

EXP

J INTEGER* 4

M INTEGER* 4

SUM REAL

T REAL

TAU REAL

REAL SUM, T, EO, E(20), TAU(20), div

INTEGER M

SUM= 0.0

DO 10 J = 1, M

WRITE(*,*) J, E(J), T, TAU(J)

div = t/tau(j)

error trap if t over tau gets really big

if (div .gt. 11000.0) div=11000.0

10 SUM = SUM + E(J) * EXP(-1.0 * div)

PRONY = EO + SUM

RETURN

END

Offset P Class

212

12 *

4 *

204

8 *

200

0 *

16 *

INTRINSIC

Name Type

DATA

EVAL

L2ERF REAL

PRONY REAL

Pass One

Size Class

1608 COMMON

SUBROUTINE

FUNCTION

FUNCTION

No Errors Detected

61 Source Lines
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Sample Input Files

Solid Rocket Propellant Stress Relaxation Data

38

0.001 3964.5

0.0023 3823.4

0.0049 3536.3
0.0071 3291.5

0.0097 3111.7

0.0146 2861.3

0.0195 2701.7

0.0264 2537.7

0.0334 2418.4

0.0432 2274.9

0.0555 2159

0.0695 2033.2

0.089 1905.5

O.1126 1793.4
O.1809 1587.5

0.2265 1489.5

0.2938 1397.2

0.3828 1319.6

0.516 1218.1

0.6818 1135

0.9021 1057.5

1.1995 961.6

1.6607 882.4
2.5274 783

3.6455 707.8

4.785 660.4

6.3953 605.8

8.0163 571.5

10.2722 539.4

12.9772 498.3

17.324 478.4

22.284 451.3

28.7547 430.7
36.4954 418

46.2945 391.6

58.3599 362.7

73.6437 357.6

84.5043 361.4
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V747-75 Viton Stress
I00

0.00000367

0.000004809

0.0000063

0.000008255

0.00001082

0.00001417

0.00001857

0 00002433

0 00003188

0 00004177

0 00005472
0 0000717

0 00009395

0.0001231

0.0001613

0.0002113

0.0002769

0.0003628

0.0004753

0.0006228

0.000816

0.001069

0.001401

0.001835
0,002405

0.003151

0.004129
0.005409

0.007088

0.009287

0.01217

0.01594

0.02089

0.02737

0.03586
0.04699

0.06156

0.08066
0.1057

0.1385

0.1814

0.2377

0.3115

0.4081

0.5347

0.7006

0.918

1.203

1.576

2. 065

2.705

3.545

4. 645

6.085

7. 973

10.45

13.69

5650

5324

4897

4472

4113

3788

3471

3176

2891

2624

2376

2153

1947

1771

1613

1481

1353

1185

1059

940.2

856.8

789.9

734.8

687.8

644.5

601

557.5

525.7

496

468.6

443.3

422.1

403.9

386.9

372.9

365

357.4

347.5

333.5

321

311

300.7

293.3

286

276.8

272.2

266.1

259.9

253.4

247.8

242.5

237.4

231.3

227.5

222.2

218

213.9

Relaxation Data
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17.93

23.5

30.79

40.34

52.86

69.26

90.74

118.9

155.8

204.1

267.4

350.4

459.1

601.5

788.2

1033

1353

1773

2323

3044

3988

5225

6846

8970

11750

15400

20180

26440

34640

45380

59460

77910

102100

133800

175200

229600

300900

394200

516500

676700

886700

1162000

1522000

209

204.3

2OO

196

192.1

187.7

186.3

184.9

183.1

178.5

173.9

170.8

167 •8

165

160.6

158.2

156.7

153.1

151.4

149.5

146.8

145.1

143.3

141.6

139.8

138.1

136.5

136

134.5

133.5

132.3

131.3

129.9

129.1

128.3

127.7

126.6

125.4

124.3

123.2

121.6

120.5

119
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Sample Output Files

Results for:

Solid Rocket Propellant Stress Relaxation Data
number of terms:

DOI Results

360.5667000

826.2373000

1179.0900000

844.4313000

537.0704000

304.6428000

117.0028000

6

4.874798E-003

2.480444E-002

1.673335E-001

1.1411860

7.1204460

41.5278700

Optimized Result
353.3835000

826.2455000

1179.0830000

844.4231000

537.0909000

304.7081000

115.8720000

5.623248E-003

3.090254E-002

2.100785E-001

1.4431110

9.4107640

35.2747100
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Results for:

V747-75 Viton Stress Relaxation Data
number of terms:

DOI Results

120.3667000

3443.7410000

1648.3390000

829.9131000

294.2484000

131.0262000

71.7018400

45.5001500

33.9000300

27.5999900

21.3000000

18.2000000

10.8000000

7.6999970

7.8000030

1.5000000

15

I.I09693E-005

6.903531E-005

4.452093E-004

3.097498E-003

1.836272E-002

1.441759E-001

9.897782E-001

6.4871400

39.2573400

295.8921000

1726.8700000

11482.6600000

80801.2000000

652020.1000000

1389563.0000000

Optimized Result

120.3667000

3443.7410000

1648.3390000

829.9131000

294.2484000

131.0262000

71.7018400

45.5001500

33.9000300

27.6000000

21.3000100

18.2000000

10.8000100

7.7000040

7.8000090

1.5000070

1.109693E-005

6.903531E-005

5.247172E-004

3.395960E-003

2.035421E-002

1.444796E-001

9.898055E-001

6.4871430

39.2573400

295.8921000

1726.8700000

11482.6600000

80801.2000000

652020.1000000

1389563.0000000
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Sample DOT Output File
DDDDD 000(30 TIITITI

D D 0 0 T

D D_O * 0= T
D D 0 0 T

DDDDD OOOOO T

DESIGN OPTIMIZATION TOOLS

(C) COPYRIGHT, 1985-89

VMA ENGINEERING

(FORMERLY ENGINEERING DESIGN OPTIMIZATION, INC)

ALL RIGHTS RESERVED, WORLDWIDE

VERSION 2.04B

- YOUR INTEGRITY IS OUR COPY PROTECTION -

CONTROL PARAMETERS

OPTIMIZATION METHOD, MEI'HOD = 1

NUMBER OF DECISION VARIABLES, NDV = 13

NUMBER OF CONSTRAINTS, NCON = 0

PRINT CONTROL PARAMETER, IPRINT = 3
GRADIENT PARAMETER, IGRAD = 0

GRADIENTS ARE CALCULATED BY DOT

THE OBJECTIVE FUNCTION WILL BE MINIMIZED

- SCALAR PROGRAM PARAMETERS

REAL PARAMETERS

1) CT = -3.00000E-02

2) CTMIN = 5.00000E-03

3) DABOBJ = 1.0(RR_E.04

4) DELOBJ = 1.00000E-06

5) DOBJI = 1.00000E.01
6) DOB/2 = 2.00000E-01

7) DX1 = 1.00000E-02

8) DX2 = 2.35818E+02

9) FDCH = 1.00000E-03
10) FDCHM = 1.00000E-04

11) RMVLMZ = 4.00000E-01

12) DABSTR = 7.15109E-04

13) DELSTR = 1.00000E-03

INTEGER PARAMETERS
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I) IGRAD= 0
2)ISCAL= -I
3) ITMAX = 1000
4) ITRMOP = I0

5) IWRrrE = 6

6)NCOLA = I II)IPRNTI = 0

7)IGMAX = 0 12)IPN.NT2 = 0

8)_FMAX = 20 13)JVc'RrrE= 0

9)ITRMST = 2

10) JPRII_ = 0

STORAGE REQUIREMENTS

ARRAY DIMENSION REQUIRED

W'K 1400 365

IWK 200 84

- INITIAL VARIABLES AND BOUNDS

LOWER BOUNDS ON THE DECISION VARIABLES (XL-VECTOR)

1) 1.00000E-10 1.00000E-10 1.00000E-10 1.00000E-10 1.00000E-10

6) 1.00000E-10 1.00000E-10 1.00000E-10 1.00000E-10 1.00000E-10

11) l._E-10 1.00000E-10 1.00000E-10

DECISION VARIABLES (X-VECTOR)

1) 3.60567E+02 8.26237E+02 4.87480E-03 1.17909E+03 2.48044E-02

6) 8.44431E+02 1.67334E-01 5.37070E+02 1.14119E+00 3.04643E+02

11) 7.12045E+00 1.17003E+02 4.15279E+01

UPPER BOUNDS ON THE DECISION VARIABLES (XU-VECTOR)

1) 1.00000E+20 1.00000E+20 1.00000E+20 1.00000E+20 1.00000E+20

6) 1.00000E+20 1.00000E+20 1.00000E+20 1.00000E+20 1.000_E+20

11) 1.00000E+20 1.00000E+20 1.00000E+20

- INITIAL FUNCTION VALUES

OBJ= .71511

m BEGIN UNCONSTRAINED OPTIMIZATION: BFGS METHOD

- BEGIN ITERATION 1

OBJECTIVE = 6.47015E-O 1

DECISION VARIABLES (X-VECTOR)

1) 3.60567E+02 8.26237E+02 7.89760E-03 1.17909E+03 2.79513E-02

6) 8.44431E+02 1.68008E-01 5.37070E+02 1.14128E+00 3.04643E+02

11) 7.12046E+00 1.17003E+02 4.15279E+01

- BEGIN ITERATION 2

OBJECTIVE = 5.89854E-01
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DECISION VARIABLES (X-VECTOR)

1) 3.60567E+02 8.26237E+02 4.82797E-03 1.17909E+03 3.43469E-02

6) 8.44431E+02 1.70867E-01 5.37070E+02 1.14177E+00 3.04643E+02

11) 7.12051E+00 1.17003E+02 4.15279E+01

- BEGIN ITERATION 3

OBJECTIVE = 4.77393E-01

DECISION VARIABLES (X-VECTOR)

1) 3.60567E+02 8.26237E+02 6.51326E-03 1.17909E+03 2.91066E-02

6) 8.44431E+02 2.32370E-01 5.37070E+02 1.15610E+00 3.04643E+02

ll) 7.12209E+00 1.17003E+02 4.15278E+01

- BEGIN ITERATION 4

OBJECTIVE = 3.61900E-01

DECISION VARIABLES (X-VECTOR)

1) 3.60568E+02 8.26237E+02 5.16969E-03 1.17909E+03 3.26994E-02

6) 8.44431E+02 2.11180E-01 5.37071E+02 1.51215E+00 3.04645E+02

11) 7.18257E+00 1.17007E+02 4.15262E+01

- BEGIN ITERATION 5

OBJECTIVE = 3.44395E-01

DECISION VARIABLES (X-VECTOR)

1) 3.60565E+02 8.26237E+02 5.63150E-03 1.17909E+03 3.08455E-02

6) 8.44431E+02 2.00236E-01 5.37071E+02 1.55682E+00 3.04646E+02

11) 7.22203E+00 1.17008E+02 4.15233E+01

- BEGIN ITERATION 6

OBJECTIVE = 3.40292E-01

DECISION VARIABLES (X-VECTOR)

1) 3.60557E+02 8.26237E+02 5.20600E-03 1.17909E+03 3.05333E-02

6) 8.44431E+02 2.00444E-01 5.37070E+02 1.51728E+00 3.04647E+02

11) 7.30687E+00 1.17010E+02 4.15152E+01

- BEGIN ITERATION 7

OBJECTIVE = 3.27804E-01

DECISION VARIABLES (X-VECTOR)

l) 3.60522E+02 8.26238E+02 5.62546E-03 1.17909E+03 3.04789E-02

6) 8.44431E+02 2.01980E-01 5.37070E+02 1.41528E+00 3.04652E+02

ll) 7.67751E+00 1.17021E+02 4.14789E+01
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- BEGINITERATION8

OBJECTIVE= 3.13886E-01

DECISION VARIABLES (X-VECTOR)

1) 3.60472E+02 8.26238E+02 5.53346E-03 1.17909E+03 3.04801E-02

6) 8.44431E+02 2.05381E-01 5.37069E+02 1.44165E-tO0 3.04660E+02

11) 8.14683E+00 1.17033E+02 4.14275E+01

- BEGIN ITERATION 9

OBJECTIVE = 3.13683E-01

DECISION VARIABLES (X-VECTOR)

1) 3.60461E+02 8.26238E+02 5.47618E-03 1.17909E+03 3.07724E-02

6) 8.44431E+02 2.03759E-01 5.37069E+02 1.44224E+00 3.04660E+02

11) 8.16004E+00 1.17032E+02 4.14178E+01

- BEGIN ITERATION 10

OBJECTIVE = 3.I0235E-01

DECISION VARIABLES (X-VECTOR)

1) 3.60090E+02 8.26238E+02 5.39597E-03 1.17909E+03 3.07160E-02
6) 8.44431E+02 2.04729E-01 5.37070E+02 1.38950E+00 3.04664E+02

11) 8.34823E+00 1.16976E+02 4.10943E+01

- BEGIN ITERATION 11

OBJECTIVE = 2.44468E-01

DECISION VARIABLES (X-VECTOR)

1) 3.53529E+02 B.26245E+02 5.54196E-03 1.17908E+03 3.14716E-02

6) 8.44423E+02 2.02240E-01 5.37090E+02 1.42370E+00 3.04706E+02

11) 9.27941E+00 1.15890E+02 3.53985E+01

- BEGIN rI'ERATION 12

OBJECTIVE = 2.37524E-01

DECISION VARIABLES (X-VECTOR)

I) 3.53302E+02 8.26245E+02 5.59169E-03 1.17908E+03 3.10226E-02
6) 8.44423E+02 2.10460E-01 5.37091E+02 1.44385E+00 3.04708E+02

11) 9.37990E+00 1.15856E+02 3.52027E+01

- BEGIN ITERATION 13
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OBJECTIVE = 2.37363E-01

DECISION VARIABLES (X-VECTOR)
1) 3.53384E+02 8.26245E+02 5.62325E-03 1.17908E+03 3.09025E-02

6) 8.44423E+02 2.10079E-01 5.37091E+02 1.44311E+00 3.04708E+02

11) 9.41076E+00 1.15872E+02 3.52747E+01

- BEGIN ITERATION 14

OBJECTIVE = 2.37363E-01

DECISION VARIABLES (X-VECI'OR)

1) 3.53384E+02 8.26245E+02 5.62325E-03 1.17908E+03 3.09025E-02
6) 8.44423E+02 2.10079E-01 5.37091E+02 1.44311E+00 3.04708E+02

11) 9.41076E+00 1.15872E+02 3.52747E+01

- BEGIN ITERATION 15

OBJECTIVE = 2.37363E-01

DECISION VARIABLES (X-VECTOR)

1) 3.53384E+02 8.26245E+02 5.62325E-03 1.17908E+03 3.09025E-02

6) 8.44423E+02 2.10079E-01 5.37091E+02 1.44311E+00 3.04708E+02

11) 9.41076E+00 1.15872E+02 3.52747E+01

- BEGIN ITERATION 16

OBJECTIVE -- 2.37363E-01

DECISION VARIABLES (X-VECTOR)

1) 3.53384E+02 8.26245E+02 5.62325E-03 1.17908E+03 3.09025E-02

6) 8.44423E+02 2.10079E-01 5.37091E+02 1.44311E+00 3.04708E+02

11) 9.41076E+00 1.15872E+02 3.52747E+01

- BEGIN ITERATION 17

OBJECTIVE = 2.37363E-01

DECISION VARIABLES (X-VECTOR)

1) 3.53384E+02 8.26245E+02 5.62325E-03 1.17908E+03 3.09025E-02

6) 8.44423E+02 2.10079E-01 5.37091E+02 1.44311E+00 3.04708E+02
11) 9.41076E+00 1.15872E+02 3.52747E+01

- BEGIN ITERATION 18

OBJECTIVE = 2.37363E-01

DECISION VARIABLES (X-VECTOR)

1) 3.53384E+02 8.26245E+02 5.62325E-03 1.17908E+03 3.09025E-02
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6) 8.44423E+02 2.10079E-01 5.37091E+02 1.44311E+00 3.04708E+02

11) 9.41076E+00 1.15872E+02 3.52747E+01

- BEGIN ITERATION 19

OBJECTIVE = 2.37363E-01

DECISION VARIABLES (X-VECTOR)

1) 3.53384E+02 8.26245E+02 5.62325E-03 1.17908E+03 3.09025E-02

6) 8.44423E+02 2.10079E-01 5.37091E+02 1.44311E+00 3.04708E+02

11) 9.41076E+00 1.15872E+02 3.52747E+01

- BEGIN ITERATION 2O

OBJECTIVE = 2.37363E-01

DECISION VARIABLES (X-VECTOR)

1) 3.53384E+02 8.26245E+02 5.62325E-03 1.17908E+03 3.09025E-02

6) 8.44423E+02 2.10079E-01 5.37091E+02 1.44311E+00 3.04708E+02

11) 9.41076E+00 1.15872E+02 3.52747E+01

- BEGIN ITERATION 21

OBJECTIVE = 2.37363E-01

DECISION VARIABLES (X-VECTOR)
1) 3.53384E+02 8.26245E+02 5.62325E-03 1.17908E+03 3.09025E-02

6) 8.44423E+02 2.10079E-01 5.37091E+02 1.44311E+00 3.04708E+02

I1) 9.41076E+00 1.15872E+02 3.52747E+01

- BEGIN ITERATION 22

OBJECTIVE = 2.37363E-01

DECISION VARIABLES (X-VECTOR)
I) 3.53384E+02 8.26245E+02 5.62325E-03 1.17908E+03 3.09025E-02

6) 8.44423E+02 2.10079E-01 5.37091E+02 1.44311E+00 3.04708E+02

11) 9.41076E+00 1.15872E+02 3.52747E+01

- BEGIN ITERATION 23

OBJECTIVE = 2.37363E-01

DECISION VARIABLES (X-VECTOR)
l) 3.53384E+02 8.26245E+02 5.62325E-03 1.17908E+03 3.09025E-02

6) 8.44423E+02 2.10079E-01 5.37091E+02 1.443liE+00 3.04708E+02

ll) 9.41076E+00 1.15872E+02 3.52747E+01
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-- OPTIMIZATION RESULTS

OBJECTIVE = 2.37363E-01

DECISION VARIABLES (X-VECTOR)

I) 3.53384E+02 8.26245E+02 5.62325E-03 1.17908E+03 3.09025E-02

6) 8.44423E+02 2.10079E-01 5.37091E+02 1.44311E+00 3.04708E+02

11) 9.41076E+00 1.15872E+02 3.52747E+01

TERMINATION

RELATIVE CONVERGENCE CRITERION WAS MET FOR 10 CONSECUTIVE
ITERATIONS

ABSOLUTE CONVERGENCE CRITERION WAS MET FOR l0 CONSECUTIVE
ITERATIONS

- OPTIMIZATION RESULTS

OBJECTIVE, FCX) = 2.37363E-01

DECISION VARIABLES, X

ID XL X XU
1 1.00000E-10 3.53384E+02 1.00000E+20

2 1.00000E-10 8.26245E+02 1.00000E+20

3 1.00000E-10 5.62325E-03 1.00000E+20
4 1.00000E-10 1.17908E+03 1.00000E+20

5 1.(X)(X)0E-10 3.09025E-02 1.00000E+20

6 1.00000E-10 8.44423E+02 1.00000E+20

7 1.00000E-10 2.10079E-01 1.00000E+20

8 1.00000E-10 5.37091E+02 1.00000E+20

9 1.00000E-10 1.44311E+00 1.00000E+20
10 1.00000E-10 3.04708E+02 1.00000E+20

11 1.00000E-10 9.41076E+00 1.00000E+20

12 1.00000E-10 1.15872E+02 1.00000E+20

13 1.00000E-10 3.52747E+01 1.00000E+20

FUNCTION CALLS = 271
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